Coral Reefs and Climate Change: An Integrated Approach

Robert H. Richmond, Ph.D.

Kewalo Marine Laboratory

Pacific Biosciences Research Center

University of Hawaii at Manoa

Approximately 30% of Reefs Have Been Negatively Impacted by Human Activities

Nuclear Testing: Extreme/Acute Disturbance

Anthropogenic Disturbance

Erosion & Sedimentation

Coastal Pollution

Overfishing

Recreational Impacts

Global Climate Change

- Massive Regional Bleaching Events
- Alternate Stable States
- Ocean Acidification
- Irish Potato Famine of Reefs

Global Climate Change

- "It has been suggested that to save reefs, we cannot exceed 450ppm CO2 in seawater. At the world's current rate of CO2 emissions, we have 8-10 years to turn the tide"
- (summary, 11th ICRS, Ft. Lauderdale, 2008)

Aragonite Saturation Levels in 1995

Aragonite Saturation Levels in 2040

Ocean acidification effects

Persistence and Perpetuation of Coral Reefs

Kuli'ou'ou during December Storm

Multi-Xenobiotic Resistance Protein

Changes in Community Characteristics

Future Scenarios

Community Meetings – Ngermeduu Bay

